Optimizing EDM Process Parameters for Enhanced Surface Finish and Metal Removal Rate (MRR)

Authors

  • Nishant Mani Research Scholar, Department of Mechanical Engineering, Kalinga University, Naya Raipur, Chhattisgarh, India Author
  • Dr. Rahul Mishra Assistant Professor, Department of Mechanical Engineering, Kalinga University, Naya Raipur, Chhattisgarh, India Author

DOI:

https://doi.org/10.32628/IJSRMME24854

Keywords:

Electrical Discharge Machining, Material Removal Rate, Surface Roughness, Process Optimization, Discharge Energy, Thermal Mechanism

Abstract

Electrical Discharge Machining (EDM) has emerged as a vital non-traditional machining process for producing complex geometries and machining hard-to-cut materials with high precision. Unlike conventional methods, EDM relies on thermoelectric energy in the form of controlled electrical discharges between the tool and workpiece immersed in a dielectric medium. Among the critical challenges in EDM, achieving a balance between material removal rate (MRR) and surface finish has been widely acknowledged. Higher discharge energy generally enhances MRR but deteriorates surface quality, while lower energy settings improve smoothness at the cost of reduced productivity. This study investigates the underlying mechanisms governing this trade-off and explores process parameter optimization for simultaneous improvement in MRR and surface finish. Experimental trials were conducted using varying pulse currents, discharge voltages, and duty cycles to evaluate their effects on machining performance. Surface roughness (Ra) was measured using a profilometer, while MRR was calculated based on weight loss method. The results reveal that moderate discharge energy combined with optimized duty cycle significantly improves MRR without compromising surface smoothness. The thermal and physical mechanisms, including controlled crater formation and plasma channel stabilization, are identified as key contributors to this improvement. The experimental findings demonstrate that optimized pulse current and duty cycle lead to an improvement of up to 20–25% in MRR while simultaneously reducing surface roughness by nearly 15% compared to conventional settings.

References

Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7 DOI: https://doi.org/10.1016/S0890-6955(03)00162-7

Singh, B., & Singh, S. (2012). Effect of process parameters on material removal rate and surface roughness in EDM of stainless steel. International Journal of Mechanical Engineering and Robotics Research, 1(3), 158–166.

Muthuramalingam, T., & Mohan, B. (2013). A review on influence of electrical process parameters in EDM process. Archives of Civil and Mechanical Engineering, 13(4), 446–460. https://doi.org/10.1016/j.acme.2013.02.003 DOI: https://doi.org/10.1016/j.acme.2013.02.003

Kumar, A., & Maheshwari, S. (2012). An investigation into machining characteristics of Nimonic 90 using EDM process. International Journal of Advanced Manufacturing Technology, 62(5–8), 553–564. https://doi.org/10.1007/s00170-011-3814-5

Kansal, H. K., Singh, S., & Kumar, P. (2007). Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel. Journal of Manufacturing Processes, 9(1), 13–22. https://doi.org/10.1016/S1526-6125(07)70106-5 DOI: https://doi.org/10.1016/S1526-6125(07)70104-4

Kumar, S., Singh, R., Singh, T. P., & Sethi, B. L. (2009). Surface modification by electrical discharge machining: A review. Journal of Materials Processing Technology, 209(8), 3675–3687. https://doi.org/10.1016/j.jmatprotec.2008.09.032 DOI: https://doi.org/10.1016/j.jmatprotec.2008.09.032

Chakraborty, S., Dey, V., & Ghosh, S. K. (2015). A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precision Engineering, 40, 1–6. https://doi.org/10.1016/j.precisioneng.2014.11.003 DOI: https://doi.org/10.1016/j.precisioneng.2014.11.003

Jeswani, M. L. (1981). Effects of the addition of graphite powder to kerosene used as dielectric fluid in electrical discharge machining. Wear, 70(2), 133–139. https://doi.org/10.1016/0043-1648(81)90359-7 DOI: https://doi.org/10.1016/0043-1648(81)90148-4

Rozenek, M., Kozak, J., Dabrowski, L., & Lubkowski, K. (2001). Electrical discharge machining characteristics of metal matrix composites. Journal of Materials Processing Technology, 109(3), 367–370. https://doi.org/10.1016/S0924-0136(00)00879-1 DOI: https://doi.org/10.1016/S0924-0136(00)00823-2

Singh, B., & Kansal, H. K. (2016). An investigation into the machining characteristics of AISI D2 die steel using copper electrode in EDM. Materials Today: Proceedings, 3(6), 1891–1899. https://doi.org/10.1016/j.matpr.2016.04.090 DOI: https://doi.org/10.1016/j.matpr.2016.04.090

Habib, S. S. (2009). Study of the parameters in electrical discharge machining through response surface methodology approach. Applied Mathematical Modelling, 33(12), 4397–4407. https://doi.org/10.1016/j.apm.2009.03.021 DOI: https://doi.org/10.1016/j.apm.2009.03.021

Tzeng, Y. F., & Lee, C. Y. (2001). Effects of powder characteristics on electrodischarge machining efficiency. International Journal of Advanced Manufacturing Technology, 17(8), 586–592. https://doi.org/10.1007/s001700170154 DOI: https://doi.org/10.1007/s001700170142

Pradhan, M. K., & Biswas, C. K. (2008). Modelling and analysis of process parameters on surface roughness in EDM of AISI D2 tool steel by RSM approach. International Journal of Advanced Manufacturing Technology, 39(5–6), 485–493. https://doi.org/10.1007/s00170-007-1225-2

Singh, S., & Garg, R. (2009). Effects of process parameters on material removal rate in EDM. Journal of Engineering and Applied Sciences, 4(1), 19–34.

Puertas, I., Luis, C. J., & Alvarez, L. (2004). Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC–Co. Journal of Materials Processing Technology, 153–154, 1026–1032. https://doi.org/10.1016/j.jmatprotec.2004.04.218 DOI: https://doi.org/10.1016/j.jmatprotec.2004.04.346

Kumar, S., & Batra, U. (2012). Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. Journal of Manufacturing Processes, 14(1), 35–40. https://doi.org/10.1016/j.jmapro.2011.09.002 DOI: https://doi.org/10.1016/j.jmapro.2011.09.002

Kibria, G., Sarkar, B. R., Pradhan, B. B., & Bhattacharyya, B. (2010). Comparative study of different dielectric fluids in micro-EDM process. International Journal of Advanced Manufacturing Technology, 48(5–8), 557–570. https://doi.org/10.1007/s00170-009-2292-6 DOI: https://doi.org/10.1007/s00170-009-2298-y

Singh, B., & Kansal, H. K. (2019). Parametric optimization of powder mixed EDM using response surface methodology. Materials Today: Proceedings, 18(2), 2221–2229. https://doi.org/10.1016/j.matpr.2019.07.189 DOI: https://doi.org/10.1016/j.matpr.2019.07.189

Chow, H. M., Yang, L. D., Lin, C. T., & Chen, Y. F. (2008). The use of SiC powder in water as dielectric for micro-slit EDM machining. Journal of Materials Processing Technology, 195(1–3), 160–170. https://doi.org/10.1016/j.jmatprotec.2007.04.127 DOI: https://doi.org/10.1016/j.jmatprotec.2007.04.130

Li, L., Zhang, Y., & Liu, Y. (2018). Analysis of crater formation in EDM considering plasma channel growth. International Journal of Heat and Mass Transfer, 117, 939–950. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.033 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.033

Maradia, U., & Kunieda, M. (2017). Investigation of crater formation in EDM with short voltage pulses. CIRP Annals, 66(1), 221–224. https://doi.org/10.1016/j.cirp.2017.04.052 DOI: https://doi.org/10.1016/j.cirp.2017.04.052

Patel, K., & Chauhan, A. (2015). Optimization of EDM process parameters using response surface methodology. International Journal of Engineering Research and Applications, 5(3), 55–62.

Muthuramalingam, T., & Mohan, B. (2016). Influence of process parameters on surface roughness in EDM process using regression analysis. Journal of Mechanical Science and Technology, 30(5), 2203–2210. https://doi.org/10.1007/s12206-016-0423-6

Downloads

Published

30-10-2024

Issue

Section

Research Articles

How to Cite

[1]
Nishant Mani and Dr. Rahul Mishra, “Optimizing EDM Process Parameters for Enhanced Surface Finish and Metal Removal Rate (MRR)”, Int. J. Sci. Res. Mech. Mater. Eng, vol. 8, no. 5, pp. 27–36, Oct. 2024, doi: 10.32628/IJSRMME24854.