Investigations of Hard Turning Parameters through Experiments for Case Hardening Steels
Keywords:
Hard turning, EN 353 material, Carburizing process, Taguchi designs, ANOVAAbstract
India's mechanical sector is expanding in the international marketplace. Suppliers of vehicle parts and accessories, a specialized industrial sector, form the backbone of the industry. On the other side, it is also having some difficulties. Raw material costs, gasoline costs, overhead costs, etc. are all rising daily. Hard turning is a process of removing the metal from the surface of a cylindrical object which is having hardness more than 45 HRC. Modern mechanical industries face an increasing demand for high productivity, and all manufacturers are constantly looking for ways to produce their products more quickly, more cheaply, and with higher quality while reducing non-value-added operations. In this study, an effort is made to enhance the hard turning process in terms of key performance measures. For hard turning, the EN 353 material is chosen, and it is hardened using the carburizing process. To get the most out of the hard turning process and to maximize performance, the process parameters are thoroughly examined and analyzed. Taguchi and orthogonal array designs were used to carry out the experiments. The goal of the current study is to critically evaluate research on cutting forces, tool wear, surface finish, and material removal rate when machining hardened steel. The ANOVA is used to determine which process parameter has a significant impact on performance measurements. The GRA method is then used to identify the optimal combination of parameters, relationships, and influence on each parameter.
References
- Silva, F.J.G. Metal Machining—Recent Advances, Applications, and Challenges. Metals 2021, 11, 580. https://doi.org/10.3390/met110405.
- S. R. V, R. P, and R. G, “An Experimental Analysis of Turning Operation in EN 31ALLOY,” Int. J. Trend Sci. Res. Dev., vol. Volume-2, no. Issue-2, pp. 1498–1502, 2018,doi: 10.31142/ijtsrd9633.
- D. K. Mohanta, B. Pani, B. Sahoo, and A. M. Mohanty, “A critical study on computation of cutting forces in metal cutting,” J. Phys. Conf. Ser., vol. 2070, no. 1, 2021, doi: 10.1088/1742-6596/2070/1/012166.
- S. B. Sahare, S. P. Untawale, S. S. Chaudhari, R. L. Shrivastav, and P. D. Kamble, “Experimental investigation of end milling operation on Al2024,” Mater. Today Proc., vol. 4, no. 2, pp. 1357–1365, 2017, doi: 10.1016/j.matpr.2017.01.157.
- S. R. Das, D. K. Mohapatra, P. C. Routray, and B. Rout, “Effects and Optimization of Machining Parameters in Hard Turning Process : a Review,” no. 1, pp. 1–9, 2015.
- C. S. Kumar and S. K. Patel, “Application of surface modification techniques during hard turning: Present work and future prospects,” Int. J. Refract. Met. Hard Mater, vol. 76, no. June, pp. 112–127, 2018, doi: 10.1016/j.ijrmhm.2018.06.003.
- S. Swain, I. Panigrahi, A. K. Sahoo, and A. Panda, “Study on machining performances during hard turning process using vibration signal under mql environment: A review,” Mater. Today Proc., vol. 18, pp. 3539–3545, 2019, doi: 10.1016/j.matpr.2019.07.284.
- S. K. Shihab, Z. A. Khan, A. Mohammad, and A. N. Siddiquee, “A review of turning of hard steels used in bearing and automotive applications,” Production and Manufacturing Research, vol. 2, no. 1. pp. 24–49, 2014. doi: 10.1080/21693277.2014.881728.
- R. Sood, C. Guo, and S. Malkin, “Turning of hardened steels,” J. Manuf. Process., vol. 2, no. 3, pp. 187–193, 2000, doi: 10.1016/S1526-6125(00)70120-4.
- B. Karpuschewski, K. Schmidt, J. Prilukova, J. Be?o, I. Ma?ková, and N. T. Hieu, “Influence of tool edge preparation on performance of ceramic tool inserts when hard turning,” J. Mater. Process. Technol., vol. 213, no. 11, pp. 1978–1988, 2013, doi: 10.1016/j.jmatprotec.2013.05.016.
- R. Suresh, S. Basavarajappa, and G. L. Samuel, “Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool,” Meas. J. Int. Meas. Confed., vol. 45, no. 7, pp.1872–1884, Aug. 2012, doi: 10.1016/j.measurement.2012.03.024.
- N. Jouini, P. Revel, P. E. Mazeran, and M. Bigerelle, “The ability of precision hard turning to increase rolling contact fatigue life,” Tribol. Int., vol. 59, pp. 141–146, Mar. 2013, doi: 10.1016/j.triboint.2012.07.010.
- R. Suresh, S. Basavarajappa, V. N. Gaitonde, and G. L. Samuel, “Machinability investigations on hardened AISI 4340 steel using coated carbide insert,” Int. J. Refract. Met. Hard Mater., vol. 33, pp. 75–86, Jul. 2012, doi: 10.1016/j.ijrmhm.2012.02.019.
- Z. Hessainia, A. Belbah, M. A. Yallese, T. Mabrouki, and J. F. Rigal, “On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations,” Meas. J. Int. Meas. Confed., vol. 46, no. 5, pp. 1671–1681, 2013, doi: 10.1016/j.measurement.2012.12.016.
- A. K. Sahoo and B. Sahoo, “Performance studies of multilayer hard surface coatings of indexable carbide inserts in hard machining: Part-II (RSM, grey relational and techno economical approach),” Meas. J. Int. Meas. Confed., vol. 46, no. 8, pp. 2868–2884, 2013, doi: 10.1016/j.measurement.2012.09.023.
- K. Bouacha, M. A. Yallese, T. Mabrouki, and J. F. Rigal, “Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool,” Int. J. Refract. Met. Hard Mater., vol. 28, no. 3, pp. 349–361, May 2010, doi: 10.1016/j.ijrmhm.2009.11.011.
- S. Ranjan Das, A. Panda, and D. Dhupal, “Hard turning of AISI 4340 steel using coated carbide insert: Surface roughness, tool wear, chip morphology and cost estimation,” in Materials Today: Proceedings, 2018, vol. 5, no. 2, pp. 6560–6569. doi: 10.1016/j.matpr.2017.11.311.
- N. Gupta, A. K. Agrawal, and R. S. Walia, “Taguchi based analysis of cutting force in hard turning EN 31 with indigenous developed Carbon Nano Tubes coated insert,” in Materials Today: Proceedings, 2019, vol. 25, pp. 827–832. doi: 10.1016/j.matpr.2019.10.001.
- V. P. Allu, D. Linga, and S. Ramakrishna, “ScienceDirect Performance investigation of surface roughness in hard turning of AISI 52100 steel-RSM approach,” 2019. [Online]. Available: www.sciencedirect.com
- B. Ravi Sankar and P. Umamaheswar Rao, “Analysis of Forces during Hard Turning of AISI 52100 Steel Using Taguchi Method,” in Materials Today: Proceedings, 2017, vol. 4, no. 2, pp. 2114–2118. doi: 10.1016/j.matpr.2017.02.057.
- H. Aouici, M. A. Yallese, K. Chaoui, T. Mabrouki, and J. F. Rigal, “Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization,” Meas. J. Int. Meas. Confed., vol. 45, no. 3, pp. 344-353, Apr. 2012, doi: 10.1016/j.measurement.2011.11.011.
- M. W. Azizi, S. Belhadi, M. A. Yallese, T. Mabrouki, and J. F. Rigal, “Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel,” J. Mech. Sci. Technol., vol. 26, no. 12, pp. 4105–4114, Dec. 2012, doi: 10.1007/s12206-012-0885-6.
- C. J. Rao, D. Sreeamulu, and A. T. Mathew, “Analysis of tool life during turning operation by determining optimal process parameters,” in Procedia Engineering, 2014, vol. 97, pp.241–250. doi: 10.1016/j.proeng.2014.12.247.
- S. A. Khan, M. Umar, M. Q. Saleem, N. A. Mufti, and S. F. Raza, “Experimental investigations on wiper inserts’ edge preparation, workpiece hardness and operating parameters in hard turning of AISI D2 steel,” J. Manuf. Process., vol. 34, pp. 187–196, Aug. 2018, doi: 10.1016/j.jmapro.2018.06.004.
- I. Equbal, R. Ohdar, N. Bhat, and S. Ahmad, “Preform Shape Optimization of Connecting Rod Using Finite Element Method and Taguchi Method,” vol. 2, no. 6, pp. 4532–4539, 2012.
- J. Antony and F. Jiju Antony, “Teaching the Taguchi method to industrial engineers,” Work Study, vol. 50, no. 4, pp. 141–149, 2001, doi: 10.1108/00438020110391873.
- U. A. Dabade, “Multi-objective process optimization to improve surface integrity on turned surface of Al/SiCp metal matrix composites using grey relational analysis,” Procedia CIRP, vol. 7, pp. 299–304, 2013, doi: 10.1016/j.procir.2013.05.051.
- J. B. Saedon, N. Jaafar, M. A. Yahaya, N. Saad, and M. S. Kasim, “Multi-objective Optimization of Titanium Alloy through Orthogonal Array and Grey Relational Analysis in WEDM,” Procedia Technol., vol. 15, pp. 832–840, 2014, doi: 10.1016/j.protcy.2014.09.057.
- A. S. Shivade and V. D. Shinde, “Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis,” J. Ind. Eng. Int., vol. 10, no. 4, pp. 149–162, 2014, doi: 10.1007/s40092-014-0081-7.
Downloads
Published
Issue
Section
License
Copyright (c) IJSRMME

This work is licensed under a Creative Commons Attribution 4.0 International License.