A Review on Positive Semi Definite System on Vibration

Authors

  • Jitendra Sunte   Assistant Professor, Department of Mechanical Engineering, Lingaraj Appa Engineering College, Bid, Tamil Nadu, India

Keywords:

Damped & Undamped system, Mode shape, Millidegree Freedom system

Abstract

In mechanical system dynamics, an eigenvalue with zero frequency signifies a rigid body motion mode. You are in this situation when you consider a system but do not apply the boundary conditions/constraints. For an object, a natural frequency can be one or more. The number of degrees of freedom in the system determines this. A system with one degree of freedom has a natural frequency of one. In a system with two degrees of freedom, there are two natural frequencies. Rigid-body modes are defined by zero natural frequencies in some dynamic systems. Some conceivable mode forms in zero-frequency systems may not entail any deformation. Rigid body modes are what they're termed. The associated frequencies are all zero. A wide range of applications are looking in to watch.

References

  1. A.Shabana:Substructuresynthesis methods fordynamicanalysisofmulti-bodysystems
  2. Comput.Struct.(1985)T.R.Kane:R.Huston,Multibodydynamics,CopyrightbyButterworth-Heinemann(USA),...
  3. M.Othmanetal.:ProcedureforevaluatingthefrictionpropertiesofhertiziancontactsunderreciprocatingslidingmotionASMEJ.Tribology(1990)
  4. P.H.Richter etal.:Chaosinclassicalmechanics:thedoublependulum
  5. R.H.Bartels,G.W.Stewart:A solution of the matrix equation AX+XB=C Comm.ACM,15(1972),pp.820-826
  6. K.Brabender,OptimaleDämpfungvonLinearenSchwingungssystemen,Ph.D.Thesis,Fernuniversität,Hagen,1998.
  7. J.W.Demmel:AppliedNumericalLinearAlgebra,SIAM,Philadelphia,PA(1997)
  8. H.Federer:GeometricMeasureTheory,Springer,NewYork(1969)
  9. S. Fine, K. Scheinberg: EfficientSVM training usinglow-rank kernel representationsJ.Mach.LearningRes.,2(2001),pp.243-264
  10. S.K.Godunov:,ModernAspectsofLinearAlgera,AMS,TranslationsofMathematicalMonographs,Vol.175,Providence,Rhode Island,1998.
  11. G.H. Golub, Ch.F.van Loan:Matrix Computations,J. Hopkins UniversityPress,Baltimore(1989)
  12. P.Lancaster,M.Tismenetsky:TheTheoryofMatrices,AcademicPress,NewYork(1985)I.Nakić,Optimaldampingofvibrationalsystems,Ph.D. Thesis,Fernuniversität,Hagen,2002.
  13. M.Paz: Structural Dynamics Theory and Computation Van Nostrand Reinhold,NewYork(1991)
  14. F.Tisseur,K.Meerbergen:Thequadraticeigenvalueproblem SIAM Rev.,43(2)(2001),pp.235-286
  15. N.Truhar,K.Veselić,:OptimizingthesolutionoftheLjapunovequation,TechnicalReport,Fernuniversität,Hagen,2001.
  16. K.Veselić:Onlinearvibrationalsystems withonedimensionaldampingAppl.Anal.,29(1988),pp.1-18
  17. K. Veselić: On linear vibrational systems with one dimensional damping II Integral EquationsOperatorTheory,13(1990),pp.883-897
  18. K. Veselić:Exponential decay of semigroupsinHilbertspaceSemigroup Forum, 55 (1997),pp.325-331
  19. K. Veselić:EstimatingtheoperatorexponentialLinearAlgebraAppl.,280(1998),pp.241-244
  20. K. Veselić, K. Brabender, K. Delinić,: Passive control of linear systems, in: M. Rogina et al.(Eds.), Applied Mathematics and Computation, Department of Mathematics University Zagreb,2001,pp.39–68

Downloads

Published

2022-06-20

Issue

Section

Research Articles

How to Cite

[1]
Jitendra Sunte , " A Review on Positive Semi Definite System on Vibration, IInternational Journal of Scientific Research in Mechanical and Materials Engineering(IJSRMME), ISSN : 2456-3307, Volume 6, Issue 3, pp.11-15, May-June-2022.