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ABSTRACT 

 

In mechanical system dynamics, an eigenvalue with zero frequency signifies a 

rigid body motion mode. You are in this situation when you consider a system 

but do not apply the boundary conditions/constraints. For an object, a natural 

frequency can be one or more. The number of degrees of freedom in the system 

determines this. A system with one degree of freedom has a natural frequency 

of one. In a system with two degrees of freedom, there are two natural 

frequencies. Rigid-body modes are defined by zero natural frequencies in some 

dynamic systems. Some conceivable mode forms in zero-frequency systems 

may not entail any deformation. Rigid body modes are what they're termed. 

The associated frequencies are all zero. A wide range of applications are looking 

in to watch. 

Keywords: Damped & Undamped system, Mode shape, Millidegree Freedom 

system 

 

I. INTRODUCTION 

 

These occur when the framework as a whole may 

move as a rigid body and vibrate. Semi-unequivocal 

frames are what they're called. They're also known as 

degenerate or illogical rigid body structures 

[K-ω2m]x=0 

The scenario mentioned here is one approach of 

expressing a problem with eigenvalues or brand 

esteem. The accompanying dislodging vectors express 

the opposing states of the vibrating system known as 

eigenvectors or mode shapes, while the quantities are 

the eigenvalues or trademark values exhibiting the 

square of the freevibration 2 frequencies. Under 

specific conditions, every point in a framework could 

perform symphonies during free vibrations. 

Because vibration at any of the two regular 

frequencies and abundance are coupled in a specific 

way, the design is known as normalmode or head 

modeof vibration. As a result, a two-level opportunity 

system has two common vibration mechanisms that 

compare two natural frequencies. 

Dunkerley's condition is an old technique for 

reducing the primary recurrence of a multi-degree-

of-freedom vibration framework. This strategy is 

really useful and important. As part of this technique, 

a series of circumstances were advanced; for example, 

in their book, Iablonskii et al. proposed a few 
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comparable conditions that were more accurate, can 

result in the upper and lower bounds of crucial 

recurrence, and can result in the second request of 

main recurrence. Sheng Shanding et al. 

synthesisedDunkerley's scenario into a unified 

framework, Yao Zuoqiu reasoned two novel and easy 

hypothesised equations on normal frequencies, and 

Yan ShichaosynthesisedDunkerleySouthwell's recipe 

for the structure-establishment framework. The 

Dunkerley criterion and its alternatives cannot be 

applied directly in some semidefinite instances. 

Its dynamical lattice hasn't existed since then (p s-d 

framework). The designers developed yet another 

succinct method for making the p s-d framework's 

mass grid and solidness network nonsingular, which 

provides a vantage point for summarising the 

Dunkerley's condition for the p s-d framework. In 

light of this strategy, this research advanced the 

relating technique and condition. 

 

II. SEMI-DEFINITE MDOF SYSTEMS, BOUNDARY 

CONDITIONS AND RIGID BODY MODES 

 

Boundaryconditions and their influence on 

mechanical vibration quality are two of the most 

essential topics covered in this course. What are 

boundary conditions, exactly? Take a look at the two-

degree-of-freedom design in Figure and notice the 

two sets of springs and dampers. One set couples the 

two latencies (i.e., the two DOFs), while the other 

sets vibrates the two DOFs in a similar overall region. 

In this case, the spring and damper to ground at the 

left of DOF 1 structure the framework's limit state. 

The surface beneath the two DOFs is obviously a limit 

condition, but it isn't really fascinating in this case 

because the wheels are frictionless and the surface 

isn't particularly interesting 

Positivedefinite if(Quadraticform)>0 

Positivesemi-definite if(Quadratic form)≥0 

Negativedefiniteif(Quadraticform) <0 

Because stiff body movements are common when 

systems vibrate, unbending body modes are critical in 

logical and exploratory vibrations. Train passenger 

vehicles, for example, can move along the track as 

rigid bodies to transport passengers from one spot to 

another, but they can also vibrate when energy is 

transmitted between the vehicles. To portray the 

train's total movements, the two forms of movement 

are required. The train can store the same amount of 

potential energy in the springs/joins between the 

vehicles in one location as it can in any other location 

along the track in terms of potential energy. Turning 

frameworks are the most well-known real use of 

rigidbody modes.  

 
Fig.  3 DOF 

 
Fig. multi DOF 

 
Fig. forced system 
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Table .translatory and rotational quantity 

 

 
Fig. A semi definite system example 

 

 
Fig. A Semi definite system example  

 

 
Fig. system of semi definite 

In MDOF systems, a natural state is a shape 

configuration that the system adopts during motion. 

Furthermore, rather of simply one natural state, an 

MDOF system has a finite number of natural modes 

of vibration. Depending on the initial parameters or 

external driving stimuli, the system can vibrate in any 

of these modes or a combination of them. Each mode 

has a natural frequency that is unique to it. There are 

as many natural frequencies as there are natural 

modes. 

As a result, while the structure of a natural mode is 

unique, its amplitude is not. Even for systems with 

hundreds of DOFs, computers and mathematical 

calculation software now allow the assessment of all 

(or some) eigenvalues and their related eigenvectors 

in real time, using a single (simple) input. Important 

orthogonality requirements are met by the 

eigenvectors (natural modes). 

 
Fig. mode shape for systems 

 

 
Fig mode shape for systems 

 

III. RESONANCE FREQUENCIES 

 

When a system is subjected to forced, steady-state 

vibration, the peak values of its displacement, velocity, 

and acceleration response occur at slightly different 

forcing frequencies. Because a resonance frequency is 

defined as the frequency for which the response is at 

its maximum, a basic system has three resonance 

frequencies if defined broadly. Any of the resonance 

frequencies diverge from the natural frequency. The 

relationships between the various resonance 

http://ijsrmme.com/
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frequencies Natural frequencies that have been 

damped and those that have not been damped nare 

Displacement resonance frequency:ωn(1-2ζ2)1/2 

Velocityresonancefrequency:ωn 

Accelerationresonancefrequency:ωn/(1-2ζ2)1/2 

Dampednaturalfrequency:ωn(1-ζ2)1/2 

For the degree of damping usually embodied in 

physical systems, the differenceamong the 

threeresonancefrequenciesis negligible 

 
Fig. 1 DOF 

The one level of opportunity paradigm is 

communicated in this way via the overall framework. 

Two mobility circumstances, namely two levels of 

opportunity and a semi-clear framework, can be used 

to create this paradigm. It is widely acknowledged 

that a single differential condition can be generated 

by conducting various operations on the two related 

conditions while managing just the vibration 

movement of the framework and not the rigid 

movement. As a result, in the literature, gear models 

that fit this definition are frequently referred to as 

one level of opportunity. as the mass of the 

framework is expanded, an unchecked natural 

occurrence of a single level of opportunity framework 

As the mass of the framework increases, its usual 

recurrence decreases.The natural frequency of a 

human standing body is around 7.5 Hz, while the 

frequency of a seating posture in the cab is around 4–

6 Hz. 

 
Fig . semi definite system 

 

IV. CONCLUSIONS 

 

This study investigated how to estimate the 

fundamental frequency of an undamped linear p s-d 

system and developed a general estimate equation 

comparable to Dunkerley's. The following are some of 

the inferences that can be drawn: 

(1) Dunkerley's equation can be applied to a linear p 

s-d system using the authors' method. 

(2) Equation can be used to estimate the 

fundamental frequency of a linear p s-d system, 

which is comparable to Dunkerley's equation. 

(3) A positive definite system's and a positive 

semidefinite system's fundamental frequencies 

can both be defined by their basic subsystems. 

(4) When the complete system may move as a rigid 

body while also vibrating, this occurs 
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