Line Graph of Friendship Graph and CTI
Albina A*, Manonmani A
Department of Mathematics, L.R.G. Govt. Arts College (W), Tirupur, India

Article Info

Volume 6, Issue 6
Page Number : 01-08
Publication Issue :
November-December-2022

Article History

Accepted : 01 Nov 2022
Published: 05 Nov 2022

Abstract

Topological indices are used to describe the symmetry of molecular structures and to predict features like boiling temperatures, viscosity, gyroscope radius, etc.[8] In recent work, the idea of chromatic topological indices has been explored as an coloring version of particular Zagreb indices. In this article, new indices for the line graph of friendship graphs have been developed.

Keywords: Chromatic Zagreb Indices, Friendship Graph, Irregularity indices, Line Graph.

I. INTRODUCTION

A topological index or a molecular structure descriptor is a numerical value associated with chemical structures with various physical properties. The connectivity index and its variants are used more frequently than any other topological index in QSPR and QSAR $[3,5,6,7]$.
J.Kok et. al. found the general formulae of chromatic Zagreb indices for certain graphs such as tree, caterpillar, etc., [4]. Let $C=\left\{c_{1}, c_{2}, \ldots, c_{l}\right\}$ be the proper coloring of any graph G. Since $|C|=l, G$ has l ! minimum parameter colorings. Denote these colorings as $\phi_{t}(G), 1 \leq t \leq l!$.

The minimum and maximum chromatic Zagreb indices, as well as the related irregularity indices, are defined as follows:

$$
\begin{aligned}
& M_{i}^{\phi^{-}}(G)=\min \left\{M_{i}^{\phi_{t}(G)}: 1 \leq t \leq l!\right\}, 1 \leq i \leq 4 \\
& M_{i}^{\phi^{+}}(G)=\max \left\{M_{i}^{\phi_{t}(G)}: 1 \leq t \leq l!\right\}, 1 \leq i \leq 4
\end{aligned}
$$

II. LINE GRAPH OF A FRIENDSHIP GRAPH

Definition 1: [1]A fan graph F_{n} is defined as the join of the path P_{n} and the graph \widetilde{K}_{1}. That is $P_{n}+\widetilde{K}_{1}$.

Definition 2: [2]The line graph of a graph G denoted by $L(G)$, is the graph whose vertices are the edges of G, with two vertices of $L(G)$ are adjacent whenever the corresponding edges of G are adjacent.

Figure 1: Fan Graph \boldsymbol{F}_{5}.

Properties of Line Graph

- Order of $L\left(F_{n}\right)=$ Size of $F_{n}=m=2 n-1$.
- Size of $L\left(F_{n}\right)=\frac{n^{2}+5 n-8}{2}$
- Chromatic number of $L\left(F_{n}\right)=\chi\left(L\left(F_{n}\right)=n\right.$.

III. MINIMUM CHROMATIC TOPOLOGICAL INDICES

A. First Zagreb Index

[4]The first chromatic Zagreb index of a graph G is defined as:

$$
\begin{aligned}
M_{1}^{\phi_{1}}(G) & =\sum_{i=1}^{n} c\left(v_{i}\right)^{2} \\
& =\sum_{j=1}^{l} \theta\left(c_{j}\right) \cdot j^{2}, c_{j} \in C
\end{aligned}
$$

THEOREM 1:

$$
M_{1}^{\phi^{-}}\left(L\left(F_{n}\right)\right)= \begin{cases}\frac{2 n^{3}+3 n^{2}+16 n-15}{6}, & \text { if } n \text { is odd } \\ \frac{2 n^{3}+3 n^{2}+16 n+24}{6}, & \text { if } n \text { is even }\end{cases}
$$

Proof:

Let $e_{1}, e_{2}, \cdots, e_{2 n-1}$ be the edge set of F_{n} which represents the vertex set of F_{n} such that, $e_{1}, e_{2}, \cdots, e_{n}$ be the edges joining the vertex of \widetilde{K}_{1} to the vertices of P_{n} and $e_{n+1}, \cdots, e_{2 n-1}$ represents the edges of P_{n}.

Case 1: When n is odd

Consider the ϕ^{-}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{i}\right)=i+1 ; 2 \leq i \leq n-1, \quad c\left(e_{n+1}\right)=$ $c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=1 \quad$ and $\quad c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-1}\right)=2$.

From the above coloring we obtain that $\theta(1)=$ $\theta(2)=\frac{n+1}{2}$ and $\theta(i)=1 ; 3 \leq i \leq n$.
$M_{1}^{\phi^{-}}(G)=\sum_{i=1}^{n} \theta(i) \cdot i^{2}$
$=1\left(\frac{n+1}{2}\right)+4\left(\frac{n+1}{2}\right)+3^{2}+\cdots+n^{2}$

$$
\begin{aligned}
=\frac{5 n+5}{2}+1^{2} & +2^{2}+\cdots+n^{2}-1^{2}-2^{2} \\
& =\frac{5 n-5}{2}+\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{2 n^{3}+3 n^{2}+16 n-15}{6}
\end{aligned}
$$

Case 2: When n is even

Consider the ϕ^{-}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{i}\right)=i+1 ; 2 \leq i \leq n-1$, $c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=1, \quad c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-3}\right)=2$ and $c\left(e_{2 n-1}\right)=3$.

From the above coloring we obtain that $\theta(1)=$ $\theta(2)=\frac{n}{2}, \theta(3)=2$ and $\theta(i)=1 ; 4 \leq i \leq n$.
$M_{1}^{\phi^{-}}(G)=\sum_{i=1}^{n} \theta(i) \cdot i^{2}$
$=1\left(\frac{n}{2}\right)+2^{2}\left(\frac{n}{2}\right)+3^{2}(2)+4^{2}+\cdots+n^{2}$
$=\frac{5 n}{2}+18+1^{2}+2^{2}+\cdots+n^{2}-1^{2}-2^{2}-3^{2}$

$$
\begin{aligned}
& =\frac{5 n}{2}+4+\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{2 n^{3}+3 n^{2}+16 n+24}{6}
\end{aligned}
$$

B. Second Zagreb Index

[4]The second chromatic Zagreb index of G is defined as:

$$
\begin{aligned}
M_{2}^{\phi_{1}}(G) & =\sum_{i=1}^{n-1} \sum_{j=2}^{n}\left(c\left(v_{i}\right) \cdot c\left(v_{j}\right)\right), v_{i} v_{j} \in E(G) \\
& =\sum_{1 \leq t, s \leq 1}^{t<s}(t \cdot s) \eta_{t s}
\end{aligned}
$$

THEOREM 2:
$M_{2}^{\phi^{-}}\left(L\left(F_{n}\right)\right)= \begin{cases}3 n^{2}+5 n-16+\sum_{3 \leq i<j \leq n}(i \cdot j), & \text { if } n \text { is odd } \\ \frac{9 n^{2}+19 n-58}{2}+\sum_{3 \leq i<j \leq n}(i \cdot j), & \text { if } n \geq 6, \text { is even } \\ 11, & \text { if } n=2 \\ 73, & \text { if } n=4\end{cases}$

Proof:

Case 1: When n is odd

Consider the ϕ^{-}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{i}\right)=i+1 ; 2 \leq i \leq n-1, \quad c\left(e_{n+1}\right)=$
$c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=1 \quad$ and $\quad c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-1}\right)=2$.

From the above coloring we get, $\eta_{12}=n+$ $1, \eta_{1 i}=\eta_{2 i}=2 ; 3 \leq i \leq n$ and $\eta_{i j}=1 ; 3 \leq i<j \leq n$.

$$
\begin{aligned}
M_{2}^{\phi^{-}}(G)= & \sum_{1 \leq i<j \leq n}(i \cdot j) \eta_{i j} \\
& =2 \eta_{12}+3 \eta_{13}+\cdots+n \eta_{1 n}+6 \eta_{23} \\
& +\cdots+2 n \eta_{2 n}+\cdots+n(n-1) \eta_{n(n-1)}
\end{aligned}
$$

$$
=2(n+1)+3 \cdot 2+4 \cdot 2+\cdots+n \cdot 2+2 \cdot 3 \cdot 2+2
$$

$$
\cdot 4 \cdot 2+\cdots+2 \cdot n \cdot 2+3 \cdot 4+3 \cdot 5
$$

$$
+\cdots+3 \cdot n+4 \cdot 5+\cdots+\cdots+n(n-1)
$$

$$
=2 n+2+2(1+2+\cdots+n)-6
$$

$$
+4(1+2+\cdots+n)-12
$$

$$
+\sum_{3 \leq i<j \leq n}(i \cdot j)
$$

$$
=2 n-16+(2+4)\left(\frac{n(n+1)}{2}\right)
$$

$$
+\sum_{3 \leq i<j \leq n}(i \cdot j)
$$

$$
=3 n^{2}+5 n-16+\sum_{3 \leq i<j \leq n}(i \cdot j)
$$

Case 2: $n=2$

Consider the ϕ^{-}coloring of $L\left(F_{2}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{3}\right)=3$. Hence $\eta_{12}=\eta_{13}=\eta_{23}=1$.
Therefore $M_{2}^{\phi^{-}}(G)=2 \eta_{12}+3 \eta_{13}+6 \eta_{23}=11$.

Case 3:n=4

Consider the ϕ^{-}coloring of $L\left(F_{4}\right)$ as follows: $c\left(e_{1}\right)=$ $c\left(e_{6}\right)=1, c\left(e_{4}\right)=c\left(e_{5}\right)=2, c\left(e_{2}\right)=c\left(e_{7}\right)=3$ and $c\left(e_{4}\right)=4$. Hence $\eta_{12}=\eta_{13}=\eta_{23}=3, \eta_{14}=\eta_{34}=$ 2 and $\eta_{24}=1$.
Therefore $\quad M_{2}^{\phi^{-}}(G)=2 \eta_{12}+3 \eta_{13}+4 \eta_{14}+6 \eta_{23}+$ $8 \eta_{24}+12 \eta_{34}=6+9+8+18+8+24=73$.

Case 4: When n is even and $n \geq 6$

Consider the ϕ^{-}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{i}\right)=i+1 ; 2 \leq i \leq n-1$,
$c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=1, \quad c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-3}\right)=2$ and $c\left(e_{2 n-1}\right)=3$.

From the above coloring we get $\eta_{12}=n-$ 1, $\eta_{13}=\eta_{23}=3, \eta_{1 n}=\eta_{3 n}=2, \eta_{2 n}=1, \eta_{1 i}=$ $\eta_{2 i}=2, \eta_{3 i}=1 ; 4 \leq i \leq n-1$ and $\eta_{i j}=1 ; 4 \leq i<$ $j \leq n$.

$$
\begin{aligned}
M_{2}^{\phi^{-}}(G)=2(n & -1)+3(3)+2(4+5+\cdots+n) \\
& +6(3)+4(4+5+\cdots+n-1)+2 n \\
& +3(4+5+\cdots+n-1)+6 n \\
& +\sum_{4 \leq i<j \leq n}(i \cdot j) \\
& =5 n-29+(2+4+3) \frac{n(n+1)}{2} \\
& +\sum_{4 \leq i<j \leq n}(i \cdot j) \\
& =\frac{9 n^{2}+19 n-58}{2}+\sum_{4 \leq i<j \leq n}(i \cdot j)
\end{aligned}
$$

C. Irregularity Index

[4]The chromatic irregularity index of G is defined as:

$$
\begin{aligned}
M_{3}^{\phi_{i}}(G) & =\sum_{i=1}^{n-1} \sum_{j=2}^{n}\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right|, v_{i} v_{j} \in E(G) \\
& =\sum_{1 \leq t, s \leq l}^{t<s}|t-s| \eta_{t s}
\end{aligned}
$$

Here $\eta_{t s}$ is the number of edges $e(=u v)$ in G such that $c(u)=t$ and $c(v)=s$.

THEOREM 3:

$M_{3}^{\phi^{-}}\left(L\left(F_{n}\right)\right)= \begin{cases}2 n^{2}-3 n+1+\sum_{i=1}^{n-3} \frac{i(i+1)}{2}, & \text { if } n \text { is odd } \\ \frac{5 n^{2}-11 n+12}{2}+\sum_{i=1}^{n-4} \frac{i(i+1)}{4}, & \text { if } n \text { is even } \\ 4, \quad \text { if } n=2 \\ 22, & \text { if } n=4\end{cases}$

Proof:

Case 1: When n is odd

Consider the ϕ^{-}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{i}\right)=i+1 ; 2 \leq i \leq n-1, \quad c\left(e_{n+1}\right)=$ $c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=1 \quad$ and $\quad c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-1}\right)=2$.

From the above coloring we get, $\eta_{12}=n+$ $1, \eta_{1 i}=\eta_{2 i}=2 ; 3 \leq i \leq n$ and $\eta_{i j}=1 ; 3 \leq i<j \leq n$.

$$
\begin{aligned}
& M_{3}^{\phi^{-}}(G)= \sum_{1 \leq i<j \leq n}|i-i| \eta_{i j} \\
&=1 \eta_{12}+2 \eta_{13}+\cdots+(n-1) \eta_{1 n} \\
&+1 \eta_{23}+\cdots+(n-2) \eta_{2 n}+\cdots \\
&+\eta_{n(n-1)} \\
&=(n+1)+2 \cdot 2+3 \cdot 2+\cdots+(n-1) \cdot 2+1 \cdot 2+2 \\
& \cdot 2+\cdots+(n-2) \cdot 2+1+2+\cdots \\
&+(n-3)+1+2+\cdots+9 n-4)+\cdots+1+2+1 \\
&=n+1+2(1+2+\cdots+n-1)-2 \\
&+ 2(1+2+\cdots+n-2+n-1)-2 n \\
&+2+\sum_{i=1}^{n-3} \frac{i(i+1)}{2} \\
&= 1-n+(2+2)\left(\frac{n(n-1)}{2}\right) \\
&+\sum_{i=1}^{n-3} \frac{i(i+1)}{2} \\
&= 2 n^{2}-3 n+1+\sum_{i=1}^{n-3} \frac{i(i+1)}{2}
\end{aligned}
$$

Case2: $n=2$

Consider the ϕ^{-}coloring of $L\left(F_{2}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{3}\right)=3$. Hence $\eta_{12}=\eta_{13}=\eta_{23}=1$.
Therefore $M_{3}^{\phi^{-}}(G)=1 \eta_{12}+2 \eta_{13}+1 \eta_{23}=4$.

Case 3:n=4

Consider the ϕ^{-}coloring of $L\left(F_{4}\right)$ as follows: $c\left(e_{1}\right)=$ $c\left(e_{6}\right)=1, c\left(e_{4}\right)=c\left(e_{5}\right)=2, c\left(e_{2}\right)=c\left(e_{7}\right)=3$ and
$c\left(e_{4}\right)=4$. Hence $\eta_{12}=\eta_{13}=\eta_{23}=3, \eta_{14}=\eta_{34}=$ 2 and $\eta_{24}=1$.
Therefore $\quad M_{2}^{\phi^{-}}(G)=\eta_{12}+2 \eta_{13}+3 \eta_{14}+\eta_{23}+$ $2 \eta_{24}+\eta_{34}=22$.

Case 4: When n is even and $n \geq 6$

Consider the ϕ^{-}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{i}\right)=i+1 ; 2 \leq i \leq n-1$,
$c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=1, c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-3}\right)=2$ and $c\left(e_{2 n-1}\right)=3$.

From the above coloring we get $\eta_{12}=n-$ 1, $\eta_{13}=\eta_{23}=3, \eta_{1 n}=\eta_{3 n}=2, \eta_{2 n}=1, \eta_{1 i}=$ $\eta_{2 i}=2, \eta_{3 i}=1 ; 4 \leq i \leq n-1$ and $\eta_{i j}=1 ; 4 \leq i<$ $j \leq n$.

$$
\begin{aligned}
& M_{3}^{\phi^{-}}(G)=(n-1)+2(3)+2(3+4+\cdots+n-1) \\
&+1(3)+2(2+3+\cdots+n-3) \\
&+(n-2)+2 n \\
&+(1+2+\cdots+n-4)+2(n-3) \\
&+\sum_{i=1}^{n-4} \frac{i(i+1)}{2} \\
&=n+1+2 \frac{n(n-1)}{2} \\
&+2 \frac{(n-2)(n-1)}{2}+\frac{(n-3)(n-2)}{2} \\
&+\sum_{i=1}^{n-4} \frac{i(i+1)}{2} \\
&=\frac{5 n^{2}-11 n+12}{2}+\sum_{i=1}^{n-4} \frac{i(i+1)}{2}
\end{aligned}
$$

D. Total Irregularity Index

[4]The chromatic total irregularity index of G is defined as:

$$
M_{4}^{\phi_{t}}(G)=\frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=2}^{n}\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right|, v_{i}, v_{j} \in V(G)
$$

Here $\eta_{t s}$ is the number of edges $e(=u v)$ in G such that $c(u)=t$ and $c(v)=s$.

THEOREM 4:

$M_{4}^{\phi^{-}}\left(L\left(F_{n}\right)\right)=\left\{\begin{array}{cl}\frac{n(n+1)(2 n-3)}{8}+\sum_{i=1}^{n-3} \frac{i(i+1)}{4}, & \text { if } n \text { is odd } \\ \frac{n^{3}+2 n^{2}-14 n+24}{8}+\sum_{i=1}^{n-4} \frac{i(i+1)}{4}, & \text { if } n \text { is even }\end{array}\right.$

Proof:

Case 1: When n is odd

Consider the ϕ^{-}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{i}\right)=i+1 ; 2 \leq i \leq n-1, \quad c\left(e_{n+1}\right)=$ $c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=1 \quad$ and $\quad c\left(e_{n+2}\right)=$
$c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-1}\right)=2$.
From the above coloring we obtain that $\theta(1)=$ $\theta(2)=\frac{n+1}{2}$ and $\theta(i)=1 ; 3 \leq i \leq n$.

$$
M_{4}^{\phi^{-}}(G)=\frac{1}{2} \sum_{1 \leq i<j \leq n}|i-j| \theta(i) \theta(j)
$$

$$
\begin{aligned}
& 2 M_{4}^{\phi^{-}}(G)=1\left(\frac{n+1}{2}\right)\left(\frac{n+1}{2}\right) \\
&+\left(\frac{n+1}{2}\right)(2+3+\cdots+n-1) \\
&+\left(\frac{n+1}{2}\right)(1+2+\cdots+n-2) \\
&+\sum_{i=1}^{n-3} \frac{i(i+1)}{2} \\
&=\left(\frac{n+1}{2}\right)\left(\frac{n+1}{2}+\frac{n(n-1)}{2}-1\right. \\
&\left.+\frac{(n-2)(n-1)}{2}\right)+\sum_{i=1}^{n-3} \frac{i(i+1)}{2} \\
&=\left(\frac{n+1}{2}\right)\left(\frac{n(2 n-3)}{2}\right)+\sum_{i=1}^{n-3} \frac{i(i+1)}{2} \\
& M_{4}^{\phi^{-}}(G)=\left(\frac{n(n+1)(2 n-3)}{8}\right)+\sum_{i=1}^{n-3} \frac{i(i+1)}{4}
\end{aligned}
$$

Case 2: When n is even

Consider the ϕ^{-}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $1, c\left(e_{n}\right)=2, c\left(e_{i}\right)=i+1 ; 2 \leq i \leq n-1$, $c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=1, \quad c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-3}\right)=2$ and $c\left(e_{2 n-1}\right)=3$.

From the above coloring we obtain that $\theta(1)=$ $\theta(2)=\frac{n}{2}, \theta(3)=2$ and $\theta(i)=1 ; 4 \leq i \leq n$.

$$
\begin{aligned}
& 2 M_{4}^{\phi^{-}}(G)= 1 \\
&\left(\frac{n}{2}\right)\left(\frac{n}{2}\right)+2\left(\frac{n}{2}\right) 2 \\
&+\left(\frac{n}{2}\right)(3+4+\cdots+n-1)+\left(\frac{n}{2}\right) 2 \\
&+\left(\frac{n}{2}\right)(2+3+\cdots+n-2)+2(1+2 \\
&+\cdots+n-3)+\sum_{i=1}^{n-4} \frac{i(i+1)}{2} \\
&= \frac{n^{3}+2 n^{2}-14 n+24}{4} \\
&+\sum_{i=1}^{n-4} \frac{i(i+1)}{2} \\
& M_{4}^{\phi^{-}}(G)=\left(\frac{n^{3}+2 n^{2}-14 n+24}{8}\right)+\sum_{i=1}^{n-4} \frac{i(i+1)}{4}
\end{aligned}
$$

IV. MAXIMUM CHROMATIC TOPOLOGICAL INDICES

A. First Zagreb Index

THEOREM 5:

$$
M_{1}^{\phi+}\left(L\left(F_{n}\right)\right)= \begin{cases}\frac{8 n^{3}-9 n^{2}+10 n-3}{6}, & \text { if } n \text { is odd } \\ \frac{8 n^{3}-9 n^{2}-8 n+18}{6}, & \text { if } n \text { is even }\end{cases}
$$

Proof:

Let $e_{1}, e_{2}, \cdots, e_{2 n-1}$ be the edge set of F_{n} which represents the vertex set of F_{n} such that, $e_{1}, e_{2}, \cdots, e_{n}$ be the edges joining the vertex of \widetilde{K}_{1} to the vertices of P_{n} and $e_{n+1}, \cdots, e_{2 n-1}$ represents the edges of P_{n}.

Case 1: When n is odd

Consider the ϕ^{+}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $n, c\left(e_{n}\right)=n-1, c\left(e_{i}\right)=i-1 ; 2 \leq i \leq n-1$,
$c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=n$
$\operatorname{and} c\left(e_{n+2}\right)=c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-1}\right)=n-1$.
From the above coloring we obtain that $\theta(n)=$ $\theta(n-1)=\frac{n+1}{2}$ and $\theta(i)=1 ; 1 \leq i \leq n-2$.

$$
\begin{aligned}
& M_{1}^{\phi^{+}}(G)=\sum_{i=1}^{n} \theta(i) \cdot i^{2} \\
& =1^{2}+2^{2}+\cdots+(n-2)^{2}+(n-1)^{2}\left(\frac{n+1}{2}\right) \\
& \quad+n^{2}\left(\frac{n+1}{2}\right) \\
& =\frac{(n-2)(n-1)(2 n-3)}{6}+\left(\frac{n+1}{2}\right)\left(n^{2}-2 n+1\right. \\
& \left.\quad+n^{2}\right)=\frac{8 n^{3}-9 n^{2}+10 n-3}{6}
\end{aligned}
$$

Case 2: When n is even

Consider the ϕ^{+}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $n, c\left(e_{n}\right)=n-1, c\left(e_{i}\right)=i-1 ; 2 \leq i \leq n-1$,
$c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=n, \quad c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-3}\right)=n-1$ and $c\left(e_{2 n-1}\right)=n-$ 2.

From the above coloring we obtain that $\theta(n)=$ $\theta(n-1)=\frac{n}{2}, \theta(n-2)=2$ and $\theta(i)=1 ; 1 \leq i \leq$ $n-3$.

$$
\begin{gathered}
\begin{array}{c}
M_{1}^{\phi^{+}}(G)==1^{2}+2^{2}+\cdots+(n-3)^{2}+(n-2)^{2} 2^{2} \\
\quad+(n-1)^{2}\left(\frac{n}{2}\right)+n^{2}\left(\frac{n}{2}\right)
\end{array} \\
=\frac{(n-2)(n-1)(2 n-3)}{6}+\left(n^{2}-4 n+4\right)+\left(\frac{n}{2}\right)\left(n^{2}\right. \\
\left.-2 n+1+n^{2}\right) \\
=\frac{8 n^{3}-9 n^{2}-8 n+18}{6}
\end{gathered}
$$

B. Second Zagreb Index

THEOREM 6:

$$
M_{2}^{\phi^{+}}\left(L\left(F_{n}\right)\right)= \begin{cases}3 n^{3}-7 n^{2}+6 n-2+\sum_{\sum_{1 \leq i<i s n-2}(i \cdot j),} \quad \text { if } n \text { is odd } \\ 3 n^{3}-7 n^{2}+3 n+\sum_{1 \leq i<i j \leq n-2}(i \cdot j), & \text { if } n \geq 6, \text { is even } \\ 11, & \text { if } n=2 \\ 93, & \text { if } n=4\end{cases}
$$

Proof:

Case 1: When n is odd

Consider the ϕ^{+}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $n, c\left(e_{n}\right)=n-1, c\left(e_{i}\right)=i-1 ; 2 \leq i \leq n-1$,
$c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=n$
$\operatorname{and} c\left(e_{n+2}\right)=c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-1}\right)=n-1$.
From the above coloring we obtain that $\eta_{(n-1) n}=$ $n+1, \eta_{i(n-1)}=\eta_{i n}=2 ; 1 \leq i \leq n-2 \quad$ and $\quad \eta_{i j}=$ $1 ; 1 \leq i<j \leq n-2$.

$$
\begin{aligned}
& M_{2}^{\phi^{+}}(G)=\sum_{1 \leq i<j \leq n}(i \cdot j) \eta_{i j} \\
& \quad=\sum_{3 \leq i<j \leq n-2}(i \cdot j) \\
& +2(n-1)(1+2+\cdots+n-2) \\
& \quad+2 n(1+2+\cdots+n-2) \\
& \quad+(n-1) n(n+1) \\
& =3 n^{3}-7 n^{2}+6 n-2+\sum_{1 \leq i<j \leq n-2}(i \cdot j)
\end{aligned}
$$

Case 2: $n=2$

Consider the ϕ^{+}coloring of $L\left(F_{2}\right)$ as follows: $c\left(e_{1}\right)=$ $3, c\left(e_{n}\right)=2, c\left(e_{3}\right)=1$. Hence $\eta_{12}=\eta_{13}=\eta_{23}=1$.
Therefore $M_{2}^{\phi^{-}}(G)=2 \eta_{12}+3 \eta_{13}+6 \eta_{23}=11$.

Case 3:n=4

Consider the ϕ^{-}coloring of $L\left(F_{4}\right)$ as follows: $c\left(e_{1}\right)=$ $c\left(e_{6}\right)=4, c\left(e_{4}\right)=c\left(e_{5}\right)=3, c\left(e_{2}\right)=c\left(e_{7}\right)=2$ and $c\left(e_{4}\right)=1$. Hence $\eta_{23}=\eta_{24}=\eta_{34}=3, \eta_{12}=\eta_{14}=$ 2 and $\eta_{13}=1$.

Therefore $\quad M_{2}^{\phi^{-}}(G)=2 \eta_{12}+3 \eta_{13}+4 \eta_{14}+6 \eta_{23}+$ $8 \eta_{24}+12 \eta_{34}=4+3+8+18+24+36=93$.
Case 4: When n is even and $n \geq 6$
Consider the ϕ^{+}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $n, c\left(e_{n}\right)=n-1, c\left(e_{i}\right)=i-1 ; 2 \leq i \leq n-1$,
$c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=n, \quad c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-3}\right)=n-1$ and $c\left(e_{2 n-1}\right)=n-$ 2.

From the above coloring we get $\eta_{(n-1) n}=n-$ 1, $\eta_{(n-2)(n-1)}=\eta_{(n-2) n}=3, \eta_{1 n}=\eta_{1(n-2)}=2$, $\eta_{1(n-1)}=1, \eta_{i n}=\eta_{i(n-1)}=2, \eta_{i(n-2)}=1 ; 1 \leq i \leq$ $n-3$ and $\eta_{i j}=1 ; 1 \leq i<j \leq n-3$.

$$
\begin{aligned}
M_{2}^{\phi^{+}}(G)= & \sum_{1 \leq i<j \leq n-2}(i \cdot j) \\
& +2(n-1)(1+2+\cdots+n-3) \\
& +2 n(1+2+\cdots+n-3) \\
& +(n-1)(n-2)(3)+(n-2) n(3) \\
& +n(n-1)(n-1) \\
& =\sum_{1 \leq i<j \leq n-2}(i \cdot j) \\
& +2(n-1)(1+2+\cdots+n-2) \\
& +2 n(1+2+\cdots+n-2) \\
& +(n-1)(n-2)+(n-2) n \\
& +n(n-1)(n-1) \\
=3 n^{3}- & 7 n^{2}+3 n+\sum_{1 \leq i<j \leq n-2}(i \cdot j)
\end{aligned}
$$

C. Irregularity Index

THEOREM 7:

$$
M_{3}^{\phi^{+}}\left(L\left(F_{n}\right)\right)= \begin{cases}2 n^{2}-n+1+\sum_{i=1}^{n-1} \frac{i(i+1)}{2}, & \text { if } n \text { is odd } \\ \frac{5 n^{2}-9 n-2}{2}+\sum_{i=1}^{n-2} \frac{i(i+1)}{2}, & \text { if } n \text { is even } \\ 4, \quad \text { if } n=2 \\ 25, & \text { if } n=4\end{cases}
$$

Proof:

Case 1: When n is odd

Consider the ϕ^{+}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $n, c\left(e_{n}\right)=n-1, c\left(e_{i}\right)=i-1 ; 2 \leq i \leq n-1$,
$c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=n$ $\operatorname{and} c\left(e_{n+2}\right)=c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-1}\right)=n-1$.

From the above coloring we get, $\eta_{1 n}=n+$ $1, \eta_{1 i}=\eta_{2 i}=2 ; 2 \leq i \leq n-1$ and $\eta_{i j}=1 ; 2 \leq i<$ $j \leq n-1$.

$$
\begin{aligned}
& M_{3}^{\phi^{+}}(G)= 2(1+2+\cdots+n-1)+n(n+1) \\
&+\sum_{i=1}^{n-3} \frac{i(i+1)}{2} \\
&+2(1+2+\cdots+n-2) \\
&=(1+2+\cdots+n-1)+n(n+1) \\
&+\sum_{i=1}^{n-1} \frac{i(i+1)}{2}+(1+2+\cdots+n-2) \\
&= \frac{(n-1) n}{2}+\frac{(n-2)(n-1)}{2} \\
&+n(n+1)+\sum_{i=1}^{n-1} \frac{i(i+1)}{2} \\
&=2 n^{2}-n+1+\sum_{i=1}^{n-1} \frac{i(i+1)}{2}
\end{aligned}
$$

Case2: $n=2$

Consider the ϕ^{+}coloring of $L\left(F_{2}\right)$ as follows: $c\left(e_{1}\right)=$ $3, c\left(e_{n}\right)=2, c\left(e_{3}\right)=1$. Hence $\eta_{12}=\eta_{13}=\eta_{23}=1$.
Therefore $M_{3}^{\phi^{+}}(G)=1 \eta_{12}+2 \eta_{13}+1 \eta_{23}=4$.

Case 3:n=4

Consider the ϕ^{+}coloring of $L\left(F_{4}\right)$ as follows: $c\left(e_{1}\right)=$ $c\left(e_{6}\right)=1, c\left(e_{4}\right)=c\left(e_{5}\right)=4, c\left(e_{2}\right)=c\left(e_{7}\right)=2$ and $c\left(e_{4}\right)=3$. Hence $\eta_{12}=\eta_{14}=\eta_{24}=3, \eta_{13}=\eta_{23}=$ 2 and $\eta_{34}=1$.

Therefore $\quad M_{2}^{\phi^{-}}(G)=\eta_{12}+2 \eta_{13}+3 \eta_{14}+\eta_{23}+$ $2 \eta_{24}+\eta_{34}=25$.

Case 4: When n is even and $n \geq 6$

Consider the ϕ^{+}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $n, c\left(e_{n}\right)=n-1, c\left(e_{i}\right)=i-1 ; 2 \leq i \leq n-1$,
$c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=n, c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-3}\right)=n-1$ and $c\left(e_{2 n-1}\right)=n-$ 2.

From the above coloring we get $\eta_{1 n}=n-$ 1, $\eta_{12}=\eta_{2 n}=3, \eta_{1(n-1)}=\eta_{2(n-1)}=2, \eta_{(n-1) n}=$ 1, $\eta_{1 i}=\eta_{\text {in }}=2, \eta_{2 i}=1 ; 3 \leq i \leq n-2 \quad$ and $\quad \eta_{i j}=$ $1 ; 3 \leq i<j \leq n-1$.

$$
\begin{aligned}
M_{3}^{\phi^{+}}(G)=1(3) & +2(2+3+\cdots+n-2) \\
& +(n-1)(n-1) \\
& +(1+2+\cdots+n-4)+2(n-3) \\
& +3(n-2)+2(2+3+\cdots+n-3) \\
& +1+\sum_{i=1}^{n-4} \frac{i(i+1)}{2} \\
& =3 \frac{(n-2)(n-1)}{2}+(n-1)^{2}+(2 n \\
& -5)+\sum_{i=1}^{n-2} \frac{i(i+1)}{2} \\
& =\frac{5 n^{2}-9 n-2}{2}+\sum_{i=1}^{n-2} \frac{i(i+1)}{2}
\end{aligned}
$$

D. Total Irregularity Index

THEOREM 8:

$M_{4}^{\phi^{-}}\left(L\left(F_{n}\right)\right)=\left\{\begin{array}{cc}\frac{3(n-1)^{2}(n+1)}{8}+\sum_{i=1}^{n-3} \frac{i(i+1)}{4}, & \text { if } n \text { is odd } \\ \frac{3 n^{3}-n^{2}-18 n+24}{8}+\sum_{i=1}^{n-4} \frac{i(i+1)}{4}, & \text { if } n \text { is even }\end{array}\right.$

Proof:

Case 1: When n is odd

Consider the ϕ^{+}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $n, c\left(e_{n}\right)=n-1, c\left(e_{i}\right)=i-1 ; 2 \leq i \leq n-1$,
$c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=n$ and $c\left(e_{n+2}\right)=c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-1}\right)=n-1$.

From the above coloring we obtain that $\theta(n)=$ $\theta(n-1)=\frac{n+1}{2}$ and $\theta(i)=1 ; 1 \leq i \leq n-2$.

$$
\begin{gathered}
M_{4}^{\phi^{+}}(G)=\frac{1}{2} \sum_{1 \leq i<j \leq n}|i-j| \theta(i) \theta(j) \\
2 M_{4}^{\phi^{+}}(G)=\left(\frac{n+1}{2}\right)(1+2+3+\cdots+n-2) \\
\quad+(n-1)\left(\frac{n+1}{2}\right)\left(\frac{n+1}{2}\right) \\
\quad+\sum_{i=1}^{n-3} \frac{i(i+1)}{2}+\left(\frac{n+1}{2}\right)(1+2+\cdots \\
+n-2) \\
\\
=\frac{3(n-1)^{2}(n+1)}{4}+\sum_{i=1}^{n-3} \frac{i(i+1)}{2}
\end{gathered}
$$

$$
M_{4}^{\phi^{+}}(G)=\frac{3(n-1)^{2}(n+1)}{8}+\sum_{i=1}^{n-3} \frac{i(i+1)}{4}
$$

Case 2: When n is even

Consider the ϕ^{+}coloring of $L\left(F_{n}\right)$ as follows: $c\left(e_{1}\right)=$ $n, c\left(e_{n}\right)=n-1, c\left(e_{i}\right)=i-1 ; 2 \leq i \leq n-1$, $c\left(e_{n+1}\right)=c\left(e_{n+3}\right)=\cdots=c\left(e_{2 n-2}\right)=n, \quad c\left(e_{n+2}\right)=$ $c\left(e_{n+4}\right)=\cdots=c\left(e_{2 n-3}\right)=n-1$ and $c\left(e_{2 n-1}\right)=n-$ 2.

From the above coloring we obtain that $\theta(n)=$ $\theta(n-1)=\frac{n}{2}, \theta(n-2)=2$ and $\theta(i)=1 ; 1 \leq i \leq$ $n-3$.

$$
\begin{aligned}
2 M_{4}^{\phi^{+}}(G)=1 & \left(\frac{n}{2}\right)(2)+\left(\frac{n}{2}\right)(2+3+\cdots+n-2) \\
& +(n-1)\left(\frac{n}{2}\right)\left(\frac{n}{2}\right) \\
& +2(1+2+\cdots+n-3) \\
& +(n-2)(2)\left(\frac{n}{2}\right)+\sum_{i=1}^{n-4} \frac{i(i+1)}{2} \\
& +\left(\frac{n}{2}\right)(1+2+\cdots+n-3) \\
& =\frac{3 n^{3}-n^{2}-18 n+24}{4} \\
& +\sum_{i=1}^{n-4} \frac{i(i+1)}{2} \\
M_{4}^{\phi^{+}}(G)= & \frac{3 n^{3}-n^{2}-18 n+24}{8}+\sum_{i=1}^{n-3} \frac{i(i+1)}{4}
\end{aligned}
$$

V. CONCLUSION

In this paper we provide an outline of topological indices of line graphs of friendship graphs. The study seems to be promising for further studies as these indices can be computed for many graph classes, derived graphs and molecular structures.

VI. REFERENCES

[1]. Albina. A, Manonmani. A, "On Chromatic Zagreb Indices of Some Cycle Related Graphs", Journal of Xi'an University of Architecture \& Technology 6(Vol 8), 495-509 (2021).
[2]. Albina. A, Manonmani. A, "Complutation of CTI of Certain Graphs", (Unpublished)
[3]. A. Heydari and B. Taeri, "Szeged Index of T[C4C8(R) Nanotubes," MATCH Commun. Math. Comput. Chem. 57, 463-477 (2007).
[4]. J. Kok, N. Sudev, and U.Mary, "On Chromatic Zagreb Indices of Certain Graphs," Discrete Math. Algorithm. Appl. 9, 1-11 (2017).
[5]. M. Eliasi and B. Taeri, "Balaban Index for Zigzag Polyhex Nanotorus," Journal of Computational and Theoretical Nanoscience 4, 1174-1178 (2007).
[6]. M. R. R. Kanna, R. P. Kumar, and R. Jagadeesh, "Computation of Topological Indices of Dutch Windmill Graph," Open Journal of Discrete Mathematics 6, 74-81 (2016).
[7]. M. V. Diudea, "Phenylenic and Naphthylenic Tori," Fullerenes, Nanotubes and Carbon Nanostructure 10, 273-292 (2002).
[8]. Rucker G., Rucker C., On topological indices, boiling points and cycloalkanes, J. Chem. Inf. Comput. Sci., 1999, 39, 788-802.
[9]. Rahul Jain, M. L. Meena, G. S. Dangayach, SixSigma Application In Tire-Manufacturing Company: A Case Study, Springer 14, (2018), pp511-520.

Cite this article as :

Albina A, Manonmani A, "Line Graph of Friendship Graph and CTI",International Journal of Scientific Research in Mechanical and Materials Engineering (IJSRMME), ISSN : 2457-0435, Volume 6 Issue 6, pp. 01-08, November-December 2022.
URL : https://ijsrmme.com/IJSRMME22659

