Influence of Millet Husk Ash and Heat Treatment on Corrosion Rate of Al-4.5%Cu Matrix Composite in Acid Environment

Authors

  • I. Aliyu  Metallurgical Engineering Department, Waziri Umaru Federal Polytechnic, Birnin Kebbi
  • T. Shehu  
  • Mustapha A. M.   

Keywords:

Millet husk ash (MHA), Aged hardened, Corrosion rate, Al-4.5%Cu/MHA

Abstract

The influence of millet husk ash and heat treatment on corrosion rate of Al-4.5%Cu/MHA in acid environment was investigated. The composites were produced by double stir casting with MHA at 0, 1, 2, 3, 4 and 5wt% in Al-4.5%Cu alloy a matrix. As-cast samples and the heat treated once at 400oC consisting four (4) sets of samples in each of these compositions were immersed in 1M HCl solution for a period of 1 to 4 days. Corrosion rate measurement was utilized in evaluating the corrosion behaviour of the composites. The results show that the corrosion rate of unreinforced Al-4.5%Cu was relatively lower than that of the reinforced Al-4.5%Cu. Similarly, corrosion resistance of aged hardened composites were superior to that of the as-cast composites in 1M HCl solution, and the corrosion rate increased with increase wt% MHA. The increase in the matrix/reinforcement interface with increase in wt% MHA in the composites was identified as the likely reason for the increase in corrosion rates observed with increase in wt%MHA.

References

  1. T. A. Khalifa and T. S. Mahmoud, (2009). Elevated Temperature Mechanical Properties of Al -Alloy AA6063/SiCp MMCs, Proceedings of the World Congress on Engineering,Vol II WCE, London, U.K, ISBN: 978 -988 -18210-1-0.
  2. B. K. Prabhakar, H. K. Shivanand, and K. S. Shivanand (2013). Evaluation of Corrosion Properties of Al 2024 Based Hybrid MMC’s, International Journal of Advances in Engineering & Technology. Vol. 5, Issue 2, 132-135.
  3. L.A. Dobrzanski, A. Wlodarczyk, M. Adamiak (2005). The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles, Journal of Materials Processing Technology, 162-163 27-32.
  4. L.A. Dobrzanski, A. Wlodarczyk, M. Adamiak (2005). Corrosion resistance of the sintered composite materials with the EN AW-AlCu4Mg1(A) alloy matrix reinforced with Al2O3 and Ti(C,N), Proceedings of the 3rd Scientific Conference “Materials Mechanical and Manufacturing Engineering” M3E’ Gliwice, 217-222.
  5. Wlodarczyk-Fligier, L.A. Dobrzanski, M. Adamiak, (2007). Influence of heat treatment on properties and corrosion resistance of Al-composite, Journal of Achievements in Materials and Manufacturing Engineering, 21, 55-58.
  6. Christy T. V., Murugan N., and Kumar S., A, (2010). Coparative study on the microstructures and mechanical properties of Al 6061 Alloy and the MMC Al 6061/TiB2/12p. JMMCE, 57-65.
  7. Alaneme K. K., (2012). Influence of thermo-mechanical treatment on the tensile behavior and CNT evaluated fracture toughness of Borax premixed SiCp reinforced aluminium (6063) composites. IJMME; 7:96-100.
  8. Rohatgi P. and Schultz B., (2007). Light weight metal matrix composites-stretching the boundaries of metals. Mater Matt; 2:16-29.
  9. Macke A., Schultz B. F. and Rohatgi P., (2012). Metal matrix composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance. Adv. Mater Processes; 170:19-23.
  10. Alaneme K. K. and Aluko A. O., (2012). Fracture toughness (K1C) and tensile properties of as-cast and age-hardened aluminium (6063)-silicon carbide particulate composites. Sci Iran Trans; 19:992-996.
  11. Miracle D. B., (2005). Metal matrix composites from science to technological significance, Compos Sci Tech.; 65:28-40.
  12. Surappa M. K., (2003). Aluminium matrix composites: Challenges and opportunities. Sadhana: 319-334, 281&2.
  13. Adiamak M., (2006). Selected properties of aluminium alloy based composites reinforced with intermetallic particles. JAMME; 14:43-7.
  14. Zuhailawati H., Samayamutthirian P. and Mohd Haizu C. H., (2007). Fabrication of low cost aluminium matrix composite reinforced with silica sand. J. Phys. Sci.; 7;18:47-55.
  15. Maleque M. A., Atiqah A., Talib R. J. and Zahurin H., (2012). New natural fibre reinforced aluminium composite for automotive brake pad, IJMME; 7:160-170.
  16. Mahendra K. V., Radhakrisna A., (2010). Characterization of stir cast Al-Cu (fly ash+SiC) hybrid metal matrix composites. J Comp. Mater.;44:989-1005.
  17. Madakson P. B., Yawas D. S., and Apasi A., (2012). Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. IJEST ;4:1190-1198.
  18. Prasad S. D. and Krishna R. A., (2011). Production and mechanical properties of A356.2/RHA composites, IJSAT; 33:51-58.
  19. Aigbodion V. S., Hassan S. B., Dauda E. T and Mohammed R. A., (2011). Experimental study of ageing behavior of Al-Cu-Mg/bagasse ash particulate composites. Tribology in Industry; 33:28-35.
  20. Alaneme K. K., Akintunde I. B., Olubambi P. A and Adewale T. M., (2013). Mechanical behavior of rice husk ash-alumina hybrid reinforced aluminium based matrix composites. J. Mater Res Technol; 2(1):60-67.
  21. Saraswathi Y.L., Das S., Mondal D.P., (2006). Influence of microstructure and experimental parameters on the erosion-corrosion behaviour of Al alloy composites, Materials Science and Engineering, A 425, p. 244 - 254.
  22. Pinto G.M., Nayak J., Shetty A.N., (2009). Corrosion Behaviour of 6061 Al - 15 vol. Pct. SiC Composite and its Base Alloy in a Mixture of 1:1 Hydrochloric and Sulphuric Acid Medium, Int. J. Electrochem. Sci., 4, 1452 - 1468.
  23. Nunes P.C.R., Ramanathan L.V., (1995). Corrosion behavior of alumina-aluminium and silicon carbide-aluminium metal-matrix composites, Corrosion, 51, 610 - 617.
  24. Alaneme K. K., (2013). Mechanical behavior of cold deformed and solution heat treated alumina reinforced AA6063 composites, West Indian J Eng., 35(2): 31-35
  25. ASTM, (2000). G5-94. Annual Book of ASTM standards, standard reference test method for making potentiostatic and potentiodynamic anodic polarization, measurements, vol. 3, 57-67.
  26. Mishra A. K., Balasubramaniam R., Tiwari S., (2007). Corrosion inhibition of 6061-SiC by rare earth chlorides. Anti-Corrosion Methods Mater., 54: 37-46.
  27. Reene Kumari P. D., Nayak J., Nityananda S. T., (2011). Corrosion behavior of 6061/Al-15 vol. pct. SiC(p) composite and the base alloy in sodium hydroxide solution. Arabian J Chem. http://dx.doi.org/10.1016/j.arabjc.2011.12.003.
  28. Funtana M. G. and Greene N. D., (1978). Corrosion engineering, 2nd ed., McGraw-Hill.
  29. Tandler M., Sustarsic B., Vehovar L., and Torkar M., (2000). Corrosion of Al/Sic metal matrix composites. Mater. Tech., 34(6):353-358
  30. Kiourtsidis G. E. and Skolianos S. M., (2007). Pitting corrosion of artificially aged T6 AA2024/SiCp composites in 3.5wt% NaCl aqueous solution, Corrosion Science, 49:2711-2725

Downloads

Published

2020-12-30

Issue

Section

Research Articles

How to Cite

[1]
I. Aliyu, T. Shehu, Mustapha A. M. , " Influence of Millet Husk Ash and Heat Treatment on Corrosion Rate of Al-4.5%Cu Matrix Composite in Acid Environment, IInternational Journal of Scientific Research in Mechanical and Materials Engineering(IJSRMME), ISSN : 2456-3307, Volume 4, Issue 6, pp.21-27, November-December-2020.