Innovative Use of Algal Biomass for Heavy Metal Bioremediation

Authors

  • Saikumar Chalivendra   Independent Researcher, USA

Keywords:

Biomass, Algae, Metal, Bioremediation

Abstract

This study focuses on the potential of algal biomass in removing heavy metals and mitigating environmental effects occasioned by industrial waste pollution. Besides, biosorption and bioaccumulation of toxic metals including lead, cadmium, and mercury are feasible employing algae including Chlorella vulgaris and Sargassum. Ion exchange mechanisms, complexation and intracellular sequestration are among the most important ones. It has areas in use such as waste water treatment, natural water treatment, and recovery of resources. However, problems such as the possible future scale-up, toxicity levels, and biomass issues remain a problem. Algal-based remediation is one of the sustainable, cost-effective, eco-friendly methods, which is effective against divalent and transition heavy metal pollution and could address circular economy requirements.

References

  1. Bulgariu, L., & Bulgariu, D. (2017). Sustainable utilization of marine algae biomass for environmental bioremediation. Prospects and challenges in algal biotechnology, 179-217. https://doi.org/10.1007/978-981-10-1950-0_6
  2. Bulgariu, L., & Gavrilescu, M. (2015). Bioremediation of heavy metals by microalgae. In Handbook of marine microalgae (pp. 457-469). Academic Press. https://doi.org/10.1016/B978-0-12-800776-1.00030-3
  3. Bwapwa, J. K., Jaiyeola, A. T., & Chetty, R. (2017). Bioremediation of acid mine drainage using algae strains: A review. South African Journal of Chemical Engineering, 24, 62-70. https://doi.org/10.1016/j.sajce.2017.06.005
  4. Chen, H., Wang, J., Zheng, Y., Zhan, J., He, C., & Wang, Q. (2018). Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation. Applied Energy, 211, 296-305. https://doi.org/10.1016/j.apenergy.2017.11.058
  5. Das, A., & Osborne, J. W. (2018). Bioremediation of heavy metals. Nanotechnology, food security and water treatment, 277-311. https://doi.org/10.1007/978-3-319-70166-0_9
  6. Gupta, S. K., Sriwastav, A., Ansari, F. A., Nasr, M., & Nema, A. K. (2017). Phycoremediation: an eco-friendly algal technology for bioremediation and bioenergy production. Phytoremediation potential of bioenergy plants, 431-456. https://doi.org/10.1007/978-981-10-3084-0_18
  7. Hassan, Z. U., Ali, S., Rizwan, M., Ibrahim, M., Nafees, M., & Waseem, M. (2017). Role of bioremediation agents (bacteria, fungi, and algae) in alleviating heavy metal toxicity. Probiotics in agroecosystem, 517-537. https://doi.org/10.1007/978-981-10-4059-7_27
  8. Igiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of toxicology, 2018(1), 2568038. https://doi.org/10.1155/2018/2568038
  9. Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae–a promising tool for heavy metal remediation. Ecotoxicology and environmental safety, 113, 329-352. https://doi.org/10.1016/j.ecoenv.2014.12.019
  10. Napan, K., Kumarasamy, K., Quinn, J. C., & Wood, B. (2016). Contamination levels in biomass and spent media from algal cultivation system contaminated with heavy metals. Algal Research, 19, 39-47. https://doi.org/10.1016/j.algal.2016.05.009
  11. Rengifo-Gallego, A. L., & Salamanca, E. J. P. (2015). Interaction algae–bacteria consortia: a new application of heavy metals bioremediation. Phytoremediation: Management of Environmental Contaminants, Volume 2, 63-73. https://doi.org/10.1007/978-3-319-10969-5_6
  12. Roberts, D. A., Paul, N. A., Bird, M. I., & de Nys, R. (2015). Bioremediation for coal-fired power stations using macroalgae. Journal of Environmental Management, 153, 25-32. https://doi.org/10.1016/j.jenvman.2015.01.036
  13. Verma, N., & Sharma, R. (2017). Bioremediation of toxic heavy metals: a patent review. Recent patents on biotechnology, 11(3), 171-187. https://doi.org/10.2174/1872208311666170111111631
  14. Yadav, K. K., Gupta, N., Kumar, V., & Singh, J. K. (2017). Bioremediation of heavy metals from contaminated sites using potential species: a review. Indian J. Environ. Prot, 37(1), 65. https://d1wqtxts1xzle7.cloudfront.net/53676048/65-83-libre.pdf?1498558581=&response-content-disposition=inline%3B+filename%3DBioremediation_of_Heavy_Metals_From_Cont.pdf&Expires=1734448973&Signature=fhmEMRx4IL1JN6MXkKeCfW7vP-LAlVtSSeTnHNRD7gF3nRVSvxwJzTNrI9I7ctzEw4Ic099hbJJDDRnpYrp68VJ1trgCwQoYPgB6ZBctTyMNbq2Z7lht7ZBCmMJenvoLp6vEPOC2R-MI0cG~nWkZO5t1Z2Tj2Geul5NZqG4UpiTjCY2YtDnQEFMsm19HmTEyoYvuNDJNZFABFLblVNjA8BMkhksmwmy5569C4L5s4ChZyXUukNxkmoSLmrDffKEKmg~hJ8JyXHieXz6eI9WmSn7ARVNy4bGHn3OUw0Vp5RNXo0z9~944hCFQ3Z90E3fm3N~~hex~8lEV4dkSIR-OGQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
  15. Ye, J., Xiao, H., Xiao, B., Xu, W., Gao, L., & Lin, G. (2015). Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticta. Water Science and Technology, 72(9), 1662-1666. https://doi.org/10.2166/wst.2015.386
  16. Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of environmental management, 181, 817-831. https://doi.org/10.1016/j.jenvman.2016.06.059

Downloads

Published

2022-10-30

Issue

Section

Research Articles

How to Cite

[1]
Saikumar Chalivendra , " Innovative Use of Algal Biomass for Heavy Metal Bioremediation, IInternational Journal of Scientific Research in Mechanical and Materials Engineering(IJSRMME), ISSN : 2456-3307, Volume 6, Issue 5, pp.21-29, September-October-2022.